KINETICS OF THE TEMPERATURE FIELD INDUCED BY
THE EMISSION OF A LASER WITH TIME-VARYING INTENSITY

E. K. Maldutis, Yu. M. Reksnis, UDC 536.3
and S, V., Sakalauskas

The kinetics of the temperature field when a medium is heated with a laser beam with a Gauss-
ian intensity distribution over the radius and different time dependences are obtained. Numeri-
cal estimates are given,

Laser radiation propagating through an optical medium heats it and changes its refractive index. This
affects the phase front of the laser radiation and may lead to self-focusing of the laser beam. The thermal
field gives rise to thermal stresses which may lead to destruction of optical components, For a more accu~
rate understanding of the processes brought about by the heating of the medium it is necessary to know the
value and distribution of the temperature field induced by the laser radiation. The problem of the heating of
a weakly absorbing medium by laser radiation has been considered in [1-3]. Ina semiinfinite medium the
kinetics of the temperature field produced by laser radiation whose intensity is constant with time, when the
heated region has the form of a cylinder, has been congidered. Values for the thermal field during the time
the laser radiation acts were obtained. To determine the kinetics of the variation of the refractive index, the
thermal stresses, and also to choose the shape of the laser radiation pulse that is optimum from the point of
view of radiation resistance, it is of interest to know the value of the temperature field not only during the
laser pulse, but also after the pulse is completed, and it is also of interest to take into account the variation
of the laser radiation intensity with time when calculating the temperature field. Inthe present paper expres-
sions are obtained for the temperature field during the laser pulse and after it is completed; the calculations
are carried out for laser radiation that is constant with time and for an intensity which varies linearly, qua-
dratically, and exponentially with time.

To solve the thermal-conduction problem, analytical calculations were carried out for the following con-
ditions and limitations,

1. A weakly absorbing isotropic medium (kI < 1, where k is the linear absorption coefficient and [ is
the length of the specimen) or a uniaxial crystal, whose optic axis coincides with the direction of propagation
of the laser radiation, is considered.

2. The medium has the form of an infinite plate. The direction of the radiation is perpendicular to its
surface. There is no heat exchange on the surfaces of the plate.

3. The intensity distribution of the laser radiation over the cross section of the beam is axisymmetrical
(Gaussian), and the heated region has the form of a cylinder.

4, It is assumed that the initial temperature of the specimen and the temperature at infinity are zero,
Consequently, assuming that under the conditions considered the temperature field is axisymmetrical

and is independent of the coordinate z, the problem will be solved in a cylindrical system of coordinates,

Solutionof the Thermal-Conduction Equation

The temperature field produced by absorption of the laser emission is found by solving the thermal~con-
duction equation
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where T is the temperature field; A is the thermal conductivity; ¢ and p are the specific heat and density of
the medium, respectively; ¢ = kI is a volume source of heat; k is the linear light absorption coefficient; and
Ifr, t) is the intensity of the laser radiation,

Assuming that the intensity of'the laser radiation canbe written in the form I(r, t) =1¢)f(r), the solution
of Eq. (1) with the boundary conditions

T(r, 0) =0, T{co, )= 0 S @)
will be

T(r, )= | 1) Tylr, t—1t)dt". @)
. .

Here T, (r, t) is the solution of the equation

aT,(r, )

W (r, i=cp o

with the boundary conditions

Ty(r, 0) ————Ck;f(r). Ty(oo, £) = 0

where Ty (r, t) denotes the temperature field which is produced by relaxation after instantaneous heating of the
medium to a temperature (k/cp)f(r).

For a Gaussian beam [f{r) = exp(—rz/r%)], T, bas the form (see, for example, [3])
2
T, (r t)z_f_, lt exp(—%.—l—), @)

L f01+_'i
T T

where r = r%c p/4A is the characteristic time of departure of the temperature from the heated region,

Using Egs. (3) and (4) we will obtain the values of the temperature field when a medium is heated by
laser radiation with an intensity that is constant with time and which varies linearly, quadratically, and ex~
ponentially with time.

a) A pulse of laser radiation, rectangular intime:

0, t<<0,
I(t)= [10, 0L,
0, t>1,.

Taking Eq. {4) intoaccount we obtain from Eq. (3) the temperature field

(0, t<0,
’ RIgt [ .. r* . o
E‘(*"'—.‘ —Ei{——. ),O<l(\si'.ft 5
T{r, )= ¢ [ y ré) ( rs T—f‘] S )
kIt r? T ) oot
‘—A— El —_ —EI —_——- ,t t,
e e R e

where

Ei(x) = ( it'dz, x<0.

v
—x

The expression for the temperature on the axis of the beam takes the simpler form

0, t<<0,
kit ,
Inf 1+—1], 0y,
TO, =1 c ( r) S ©)
ki In T+t >,
v P T-t—14

714



b) The intensity of the laser emission increases linearly with time
0, <0,

=11, -;- 0 t<t,,

0

0, 1>1,
The temperature field in this case is given by the expression
0, 1<0,
2 / 2 2 3
kls {[ ( %)——Ex rq T )}(l—{—% +_t)+
cot, ro _ rg T+ 1 7o T
2
+EXP( L, — 1f~)e><p(——r; i )1, thz120,
6 y ro t+t))
y )= 2 . 2 ’ 7
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+%+i)+(l+—t—-’°)e><p(—% e rad b
ro T T ro t-Ht—t,
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't) ro T+t
The temperature on the axis of the beam varies with time as given by
0, i<0
IR t t t
I+—In{l+ —|—— 1|, 04,
ro =] o (7)1 T) =gk osrss ®

2 \
B[R A

U cofo T T-t—1, T
If the intensity of the laser decreases linearly with time, the temperature field will be given by the dif-

ference between Eqs. (5), (6) and (7), (8).

c) A parabolic variation of the intensity of the laser emission with time
0, <0,

2 t‘
I = 410(—%+7—), 6, >1>0,
0 (1]
0, >4,

The solution for the temperature field has the form

0, ¢<0.
3 2 2
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The temperature on the axis of the beam will be

0, t<0,
3 . _ , |
4kloz [(1+_l\(1+t to)m(vl_:_i,__t .
Seolg | T/ \ T ' T T
3t — 2t
e 0) L >1>0,
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0
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d) The intensity of the laser emission varies exponentially with time:

=% 1<0
{ fyexp(—pt), t 0.

The temperature on the axis of the beam varies as given by

0, 1<0,
T, z)=j—’”L {Ei[—B(x - )] —Ei(—B1)} 2 ' (1)
o

expl—P(r=9], t=0.

The time behavior of the intensity of the emission of a pulsed laser can often be approximated by the dif-
ference between two exponential relations. The temperature on the axis of the beam in this case is given by
the difference between expressions of the form (11).

The temperature field induced by laser emission pulses which repeat periodically after a time interval
tn is given by the sum of the temperature fields induced by each of the radiation pulses:

T(r, )= NT(r, t—it,).

i=0

Here m is the number of laser pulses (i,e., the integer part of t/tp), and T (r, t — ity) is the temperature field
produced by the i-th laser pulse.

Discussion of the Results Obtained

The expressions given above describe the temperature field during the laser pulse and after the pulse
is completed, and they take info account the change in the laser emission intensity with time. The values ob~
tained for the temperature field are more general than those obtained previously in [1-3], where for a Gaussian
beam the temperature field was considered during the laser pulse assuming constant intensity. However, the
expressions obtained for the temperature field have the complex form given by Egs. (5)-(11). These expres-
sions can be simplified in some important practical cases: a) for times considerably less than the character-
istic temperature relaxation time ¢ «< 7); b) for times considerably greater than the length of the laser pulse
t > ty). In order to obtain asymptotic expressions for the temperature field, the general solution (3), using
Eq. (4), canbe expanded in a Taylor series, Assuming that the first two terms are not equal to zero in the
expansion, the time interval for which the temperature field can be described by the first term of the
expansion with an accuracy n (for example, 5 = 0.1) canbe obtained. The temperature field can then be de-
scribed by the following asymptotic expressions:

co

,fe_(flexp(__ L_:—), << 2,
L

T r)=:%@,_1_’ i1 ‘),f0<q(:ﬂ), az)
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Fig. 1. Dependence of the temperature on
the thermal diffusivity for different time de-
pendences (1-3) of the laser emission pulse,

t
where ef) =6f I¢)dt is the energy density of the laser emission on the axis of the beam. It is easy to show that
for times t < 277 with an error less than n -100% the thermal conductivity of the medium can be neglected. For
fairly long times [t> (t,/n) — r]the temperature field is identical with the relaxation temperature field of an
instantaneously heated region ().

The applicabilify of the asymptotic expressions for the temperature field (12) is determined by the char-
acteristic thermal-diffusivity time 7. In focused laser beams (for r; = 50 u), operating under free-running
conditions, for K, BK, LK, F, and TF optical glasses f4], the characteristic thermal-diffusivity time is 1-2
nsec. To determine the temperature with an accuracy of 10% in glasses the thermal conductivity must be
taken info account for pulse lengths of 0.2-0.4 nsec, and in optical semiconductors (GaAs and Ge) and dielec-
tric media withgood thermal conductivity (Al,O; :Cr®*, LiNbO;), for pulse lengths ~10~®sec. Consequently,
it is necessary to take the thermal conductivity of the medium into account in calculations of the thermoelas-
tic stresses and in measurements of the optical constants of the medium by the interference method [5].

The effect of the laser pulse shape and the thermal diffusivity of the medium on the temperature field
can be followed if the intensity of the laser emission is normalized in such a way that the energy of the radia-
tion in the pulse is the same, Figure 1 shows the dependence of the temperature of the medium at the end of
the radiation on the characteristic thermal-diffusivity time for laser intensities which are linearly increasing
with time, independent of time, and linearly decreasing with time, for two characteristic points in the speci-
ment — on the axis of the beam { = 0) and at a distance from the axis of the beam {r =r(). It is seen from the
figure that when ty/r ~ 1 the temperature fields differ by up to 20%. The calculations show that on the axis of
the beam for "parabolic" and "rectangular” pulses ¢/t =10 and ty/v = 1) the temperatures at the end of the
pulse differ by 20% and 2%, respectively. By measuring the temperature field as a function of the pulse shape
one can approximate the actual pulse shape by means of the relations given above for the intensity of the laser
emission as a function of time, and using the above solutions, one can calculate the temperature field with any
required accuracy.

The solutions (5)-(11) obtained can be employed to determine the temperature field at any instant of time
produced by absorption of a single pulse or repeated pulses of laser emission having a Gaussian spatial distri-
bution, taking into account the variation of its intensity with time,

NOTATION

k, linear light absorption coefficient; I, sample length; r, distance from the axis; r,, radius of the
Gaussian beam; t, instantaneous time; t;, pulse lengths; 7, characteristic time of departure of heat; c, heat
capacify; p, density; q, volume source of heat; Ifr, t), laser emission intensity; f, spatial profile of the
pulse; It), pulsetime shape; e, energy density; 75, the desired relative error; A, the thermal conductivity;
.. tn, pulse repetition time,

LITERATURE CITED

1. J. P. Gordon, R.C.C. Leite, R.8. Moore, S, P. S, Porto, and J. R, Whinnery, J. Appl. Phys., 36,
3 (1965).

2. J. Stone, J, Opt. Soc, Amer., 62 (3), 327 (1972).

3. K. Brugger, J. Appl. Phys., 43 (2), 577 (1972).

717



4, Colorless Optical Glass, GOST (All-Union State Standard) 13659-68, Moscow (1968),
5. I. A. Gubbinas, E, K. Maldutis, and Yu. M. Reksnis, Zh. Tekh, Fiz., Pis'ma Red., 1 (11), 502 (1975).

A SIMPLE PROCEDURE FOR CONSTRUCTING SOLUTIONS
OF NONLINEAR HEAT-CONDUCTLON PROBLEMS BY THE
KANTOROVICH METHOD

G. N. Gusenkov and I, M. Chirkov UDC 536.24.02

A simplified procedure based on expansion in the neighborhood of an approximate solution is
discussed for solution of the quasilinear heat-conduction equation.

It is generally known that either the energy method or the more promising method of Galerkin [2] is
used in connection with the method of Kantorovich [1]. The crux of either approach is that in the solution of
nonlinear problems of mathematical physics one must inevitably cope with systems of nonlinear ordinary dif-
ferential equations and algebraic equations, a prospect that often incurs insurmountable difficulties and
naturally imposes limitations on practical applications. A vital problem in this connection is the search for
a procedure that can be used to construct solutions of nonlinear problems by reduction to ordinary differen-
tial equations without having to solve systems of nonlinear equations, at least in the stage of refinement of the
initial approximation,

Below we consider such a procedure for the quasilinear heat-conduction equation in three-dimensional
space and for a general type of nonlinear boundary-value problem. In addition to the requirements of exis-
tence and uniqueness of a solution, we impose constraints that are quite strong, but are nonetheless frequently
justified, as a rule, in a number of practical problems, as for example in the area of heat physics: 1) The
solution T (x, y, z, t) is representable with sufficient practical accuracy in some neighborhood of a certain
initial approximation T =T(x, y, z, t) by an equation in the form of a power series, finite or infinite, which
is differentiable with respect to the coordinates and time; 2) in the neighborhood of T = Tyx, ¥, z, t) the co-
efficients in the equation and in the boundary conditions are analytical functions of T,

Congider the equation

oT
[L(T) 5 =V tf(T) VT @)
subject to the boundary conditions on the surface s
F(T)VT + [ (7)), = 0. @)
In accordance with constraints 1) and 2) we represent T and the functions fj @ =1, 2, 3, 4) inthe form

T=oa,+ex+ ... ¢, @)
fi=filrer, + gf_ﬁ (T—TO)-'—. .o=B,; (€™ ). 4)

aT Ft 0 ki 'm

The "Einstein rule," i.e., summation with respect to a certain index, is tacitly understood at all times.

As the initial expression for o, we can take the solution given by, for example, the integral (3, 4] or any
other suitable method.

We substitute (3) and ) into (1) and (2), We obtain
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